15
Valery S. Sekovanov
Kostroma State University
Larisa B. Rybina
Kostroma State Agricultural Academy
Roman Al. Shchepin
Kostroma State University
Completion of a multi-stage mathematical-informational task “Cycles, Julia sets and Lo-Fatu petals” as a means of developing students' creativity
Completion of a multi-stage mathematical-informational task “Cycles, Julia sets and Lo-Fatou petals” as a means of developing students' creativity. Vestnik of Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics, 2025, vol. 31, no. 1, pp. 123-131 (In Russ.). https://doi.org/10.34216/2073-1426-2024-31-1-123-131
DOI: https://doi.org/10.34216/2073-1426-2025-31-1-123-131
УДК: 51
EDN: PQJDAA
Publish date: 2025-03-01
Annotation: In this article, cycles, Julia sets and Lo-Fatou petals are considered within the framework of a multi-stage mathematical and information task. The study of these sets is associated with both the use of mathematical methods and the application of information and communication technologies, which creates favorable conditions for the development of students' creativity. Information and communication technologies include computer programs with the help of which Julia sets and Lo-Fatou petals are constructed for second-degree polynomials.
Keywords: creativity, creation, algorithm, filling Julia set, cycle, Lo-Fatou petal, orbit of a point, fixed point, structure of fixed points, neutral-rational fixed point, parabolic fixed point, neutral-irrational fixed point, attractive fixed point, repulsive fixed point.
Literature list: Minlor Dzh. Golomorfnaja dinamika [Holomorphic Dynamics]. Izhevsk, NIC «Reguljarnaja i haoticheskaja dinamika» Publ., 2000, 320 p. (In Russ.) Pajgen H.-O, Rihter P.H. Krasota fraktalov. Obrazy kompleksnyh dinamicheskih system [The Beauty of Fractals. Images of Complex Dynamic Systems]. Moscow, Mir Publ., 1993, 176 p. (In Russ.) Sekovanov V.S. Jelementy teorii fraktal'nyh mnozhestv [Elements of the theory of fractal sets]. Moscow, Librokom Publ., 2015, 248 p. (In Russ.) Sekovanov V.S. O nekotoryh diskretnyh nelinejnyh dinamicheskih sistemah [On Some Discrete Nonlinear Dynamic Systems]. Fundamental'naja i prikladnaja matematika [Fundamental and Applied Mathematics]. Moscow, INTUIT Publ., 2016a, vol. 21, no. 3, pp. 185-199. (In Russ.) Sekovanov V.S. Chto takoe fraktal'naja geometrija? [What is Fractal Geometry?]. Moscow, Lenan Publ., 2016b, 272 p. (In Russ.) Sekovanov V.S. Jelementy teorii diskretnyh dinamicheskih system [Elements of the Theory of Discrete Dynamic Systems]. Saint Petersburg, Lan' Publ., 2017, 180 p. (In Russ.) Sekovanov V.S. Fraktal'naja geometrija: Prepodavanie, zadachi, algoritmy, sinergetika, jestetika, prilozhenija [Fractal Geometry: Teaching, Problems, Algorithms, Synergetics, Esthetics, Applications]. Saint Petersburg, Lan' Publ., 2019, 180 p. (In Russ.) Sekovanov V.S. Golomorfnaja dinamika [Holomorphic dynamics]. Saint Petersburg, Lan' Publ., 2021a, 168 p. (In Russ.) Sekovanov V.S. O mnozhestvah Zhjulia funkcij, imejushhih nepodvizhnye parabolicheskie tochki [On Julia sets of functions with parabolic fixed points]. Fundamental'naja i prikladnaja matematika [Fundamental and Applied Mathematics]. Moscow, Intuit Publ., 2021b, vol. 23, no. 4, pp. 163-176. (In Russ.) Sekovanov V.S., Salov A.L., Samohov E.A. Ispol'zovanie klastera pri issledovanii fraktal'nyh mnozhestv na kompleksnoj ploskosti [Using a cluster in the study of fractal sets on the complex plane]. Aktual'nye problemy prepodavanija informacionnyh i estestvenno-nauchnyh disciplin: materialy V Vserossijskoj nauchno-metodicheskoj konferencii [Actual problems of teaching information and natural science disciplines: materials of the V All-Russian scientific and methodological conference]. Kostroma, KGU im. N.A. Nekrasova Publ., 2011, pp. 85-103. (In Russ.) Sekovanov V.S., Rybina L.B., Berezkina A.E. O mnozhestvah Zhjulia funkcij, imejushhih parabolicheskuju nepodvizhnuju tochku [On Julia sets of functions with a parabolic fixed point]. Aktual'nye problemy prepodavanija informacionnyh i estestvenno-nauchnyh disciplin: materialy XII Vseros. nauch.-metod. konf. [Actual problems of teaching information and natural science disciplines: materials of the XII All-Russian scientific and methodological conference]. Kostroma, KGU Publ., 2018, pp. 144-150. (In Russ.) Vypolnenie mnogojetapnogo matematiko-informacionnogo zadanija «Postroenie fraktal'nyh mnozhestv s pomoshh'ju L-sistem i informacionnyh tehnologij» kak sredstvo razvitija kreativnosti studentov [Completion of a multi-stage mathematical-informational task “Construction of fractal sets using L-systems and information technologies” as a means of developing students' creativity], Sekovanov V.S., Ivkov V.A., Piguzov A.A. et al. Sovremennye informacionnye tehnologii i IT-obrazovanie [Modern information technologies and IT education], 2016, vol. 12, no. 3. pp. 118-125. (In Russ.) Vypolnenie mnogojetapnogo matematiko-informacionnogo zadanija «Obramlenie mnozhestva Mandel'brota semejstv polinomov tret'ej stepeni i zamechatel'nye krivye» [Completion of the multi-stage mathematical-information task “Framing the Mandelbrot set of families of third-degree polynomials and remarkable curves”], Smirnova E.S., Sekovanov V.S., Rybina L.B. et al. Vestnik Kostromskogo gosudarstvennogo universiteta. Serija: Pedagogika. Psihologija. Sociokinetika [Bulletin of Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics], 2024, vol. 30, no. 1. pp. 63-72. (In Russ.)
Author's info: Valery S. Sekovanov, Doctor of Pedagogical Sciences, Candidate of Physico-Mathematical Sciences, Professor, Kostroma State University, Kostroma, Russia, sekovanovvs@yandex.ru, https://orcid.org/0000-0002-8604-8931
Co-author's info: Larisa B. Rybina, PhD, Associate Professor, Kostroma State Agricultural Academy, Kostroma, Russia, larisa.rybina.2014@mail.ru, https://orcid.org/0000-0001-7891-9373
Co-author's info: Roman Al. Shchepin, Kostroma State University, Kostroma, Russia, kurlikchelovek@gmail.com , https://orcid.org/0009-0000- 1175-7488