9
Elena Sa. Smirnova
Kostroma State University
Valery S. Sekovanov
Kostroma State University
Larisa B. Rybina
Kostroma State Agricultural Academy
Roman Al. Shchepin
Kostroma State University
Performing a multi-stage mathematical information task "Framing the Mandelbrot set of families of polynomials of the third degree and remarkable curves"
Sekovanov V. S., Smirnova E. S., Rybina L. B., Shchepin R. A. Performing a multi-stage mathematical information task "Framing the Mandelbrot set of families of polynomials of the third degree and remarkable curves". Vestnik of Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics, 2024, vol. 30, № 1, pp. 63-72. https://doi.org/10.34216/2073-1426-2024-30-1-63-72
DOI: https://doi.org/10.34216/2073-1426-2024-30-1-63-72
УДК: 378:51
EDN: FWYDNK
Publish date: 2024-03-18
Annotation: In this article, within the framework of a multi-stage mathematical information task, the methodology for students to study Mandelbrot sets and frames of Mandelbrot sets of a family of polynomials of the third degree is indicated. Algorithms for constructing these sets in various environments are described. The connections of the frames of the Mandelbrot set with remarkable curves are studied: lemniscate, epicycloid and others. This work is aimed at developing students' creativity and research competencies. When performing a multi-stage mathematical and informational task, the student acts as a mathematician, programmer and computer artist, which is aimed at developing his creativity and increasing motivation for mathematics and programming.
Keywords: creativity, creativity, multi-stage mathematical information task, fixed point, fixed attracting point, fixed neutral point, fixed repulsive point, critical point, orbit of the point, Mandelbrot set, framing of the Mandelbrot set, lemniscate, epicycloid, polynomial of the third degree.
Literature list: Kronover R.M. Fraktaly i haos v dinamicheskih sistemah [Fractals and chaos in dynamic systems]. Moscow: Postmarket, 2000. 352 p. (In Russ.) Markushevich A. I., Markushevich L. A. Vvedenie v teoriyu analiticheskih funkcij [Introduction to the theory of analytical functions]. Moscow: "Enlightenment", 1977. 320 p. (In Russ.) Milnor J. Golomorfnaya dinamika [Holomorphic dynamics]. Izhevsk: SIC "Regular and chaotic dynamics", 2000. 320 p. (In Russ.) Paygen H., Richter P. Krasota fraktalov. Obrazy kompleksnyh dinamicheskih sistem [The beauty of fractals. Images of complex dynamic systems]. Moscow: Mir, 1993. 176 p. (In Russ.) Sekovanov V. S. O mnozhestvah Zhyulia racional'nyh funkcij [On Julia sets of rational functions]. Vestnik Kostromskogo gosudarstvennogo universiteta im. N.A. Nekrasova [Bulletin of the Kostroma State University named after N.A. Nekrasov], 2012, vol. 18, №. 2. pp. 23-28. (In Russ.) Sekovanov V. S. Elementy teorii fraktal'nyh mnozhestv [Elements of the theory of fractal sets]. Kostroma: KSU, 2012. 208 p. (In Russ.) Sekovanov V. S., Rybina L. B., Berezkina A. E. O mnozhestvah Zhyulia funkcij, imeyushchih parabolicheskuyu nepodvizhnuyu tochku [On sets of Julia functions having a parabolic fixed point]. Aktual'nye problemy prepodavaniya informacionnyh i estestvenno-nauchnyh disciplin [Actual problems of teaching information and natural science disciplines]. Kostroma: KSU, 2018. pp. 144-150. (In Russ.) Sekovanov V. S., Smirnova A. O. Razvitie gibkosti myshleniya studentov pri izuchenii struktury nepodvizhnyh tochek polinomov kompleksnoj peremennoj [Development of flexibility of students' thinking in studying the structure of fixed points of polynomials of a complex variable]. Vestnik Kostromskogo gosudarstvennogo universiteta. Seriya: Pedagogika. Psihologiya. Sociokinetika [Bulletin of Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics], 2016, vol. 22, № 3, pp. 189-192. (In Russ.) Sekovanov V. S. O nekotoryh diskretnyh nelinejnyh dinamicheskih sistemah. Fundamental'naya i prikladnaya matematika [On some discrete nonlinear dynamical systems]. Fundamental'naja i prikladnaja matematika [Fundamental and applied mathematics], 2016, Vol. 21 (3), pp. 133 – 150. (In Russ.) Sekovanov V.S. Chto takoe fraktal'naya geometriya? [What is fractal geometry?]. Moscow: LENAND, 2016. 260 p. (In Russ.) Sekovanov V.S. Elementy teorii diskretnyh dinamicheskih sistem. Uchebnoe posobie [Elements of the theory of discrete dynamical systems. Study guide]. St. Petersburg: Lan Publishing House. 2017. 180 p. (In Russ.) Sekovanov V. S., Rybina L. B., Strunkina K. Yu. Izuchenie obramlenij mnozhestv Mandel'brota polinomov vtoroj stepeni kak sredstvo razvitiya original'nosti myshleniya studentov [Studying the frames of Mandelbrot sets of polynomials of the second degree as a means of developing the originality of students' thinking]. Vestnik Kostromskogo gosudarstvennogo universiteta. Seriya: Pedagogika. Psihologiya. Sociokinetika [Bulletin of Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics], 2019, Vol.25, № 4, pp. 193-199. (In Russ.) Sekovanov V.S., Salov A.L., Samokhov E.A. Ispol'zovanie klastera pri issledovanii fraktal'nyh mnozhestv na kompleksnoj ploskosti. Aktual'nye problemy prepodavaniya informacionnyh i estestvennonauchnyh disciplin [The use of a cluster in the study of fractal sets on a complex plane. Actual problems of teaching information and natural science disciplines]. Materialy V Vserossijskoj nauchno-metodicheskoj konferencii [Materials of the V All-Russian Scientific and Methodological Conference], 2011. pp. 85-103. (In Russ.) Sekovanov V. S. Fractal geometry. Fraktal'naya geometriya. Prepodavanie, zadachi, algoritmy, sinergetika, estetika, prilozheniya: Uchebnoe posobie [Teaching, tasks, algorithms, synergetics, aesthetics, applications: textbook]. St. Petersburg: Publishing house "Lan", 2019. 180 p. (In Russ.) Sekovanov V.S. O mnozhestvah Zhyulia funkcij, imeyushchih nepodvizhnye parabolicheskie tochki. Fundamental'naya i prikladnaya matematika [On sets of Julia functions having fixed parabolic points. Fundamental and applied mathematics]. 2021. Vol. 23, № 4, pp. 163-176. (In Russ.) Sekovanov V. S. Gladkie mnozhestva Zhyulia. Fundamental'naya i prikladnaya matematika [Smooth Julia sets. Fundamental and applied mathematics], 2016, Vol. 21 (4), pp. 133 – 150. (In Russ.) Sekovanov V. S., Rybina L. B. Obramleniya pervogo i vtorogo poryadkov mnozhestv Mandel'brota i struktura nepodvizhnyh tochek polinomov vtoroj stepeni, Fundamental'naya. i prikladnaya matematika [Frames of the first and second orders of Mandelbrot sets and the structure of fixed points of polynomials of the second degree, Foundation. and approx. math], 2022, Vol.24 (2), рр. 197-212. (In Russ.) Sekovanov V.S. Golomorfnaya dinamika. Uchebnoe posobie [Holomorphic dynamics. Study guide]. St. Petersburg: Lan Publishing House. 2021. 168 p. (In Russ.) Sekovanov V.S. Akademik AN SSSR A. N. Kolmogorov: Zhizn' v nauke i nauka v zhizni geniya iz Tunoshny [Academician of the USSR Academy of Sciences A. N. Kolmogorov: Life in science and science in the life of a genius from Tunoshna]. Moscow, 2014. 704 p. (In Russ.) Sekovanov V.S., Mironkin D.P. Izuchenie preobrazovaniya pekarya kak sredstvo formirovaniya kreativnosti studentov i shkol'nikov s ispol'zovaniem distancionnogo obucheniya [The study of the baker's transformation as a means of forming the creativity of students and schoolchildren using distance learning]. Vestnik Kostromskogo gosudarstvennogo universiteta im. N.A. Nekrasova [Bulletin of the Kostroma State University named after N. A. Nekrasov], 2013, Vol.19, №. 1, pp. 190-195. (In Russ.) Sekovanov V.S. Elementy teorii fraktal'nyh mnozhestv (3-e izdanie, pererabotannoe i dopolnennoe) [Elements of the theory of fractal sets (3rd edition, revised and supplemented)]. Kostroma: KSU, 2010. 260 p. (In Russ.) Sekovanov V.S. Obuchenie fraktal'noj geometrii kak sredstvo formirovaniya kreativnosti studentov fiziko-matematicheskih special'nostej universitetov. Dissertaciya na soiskanie uchenoj stepeni doktora pedagogicheskih nauk [Teaching fractal geometry as a means of forming the creativity of students of physics and mathematics specialties of universities. Dissertation for the degree of Doctor of Pedagogical Sciences]. Kostroma, 2007. (In Russ.) Smirnova E. S. Ispol'zovanie kejs-tekhnologii na urokah matematiki i informatiki s cel'yu formirovaniya metapredmetnyh obrazovatel'nyh rezul'tatov obuchayushchihsya [The use of case technology in mathematics and computer science lessons in order to form meta-subject educational results of students]. Vestnik Kostromskogo gosudarstvennogo universiteta. Seriya: Pedagogika. Psihologiya. Sociokinetika [Bulletin of Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics], 2019, vol. 2, pp. 152-157. (In Russ.) Smirnova E. S. Metodicheskie osobennosti vvedeniya ponyatiya «fraktal» [Methodological features of the introduction of the concept of "fractal]. Vestnik Kostromskogo gosudarstvennogo universiteta. Seriya: Pedagogika. Psihologiya. Sociokinetika [Bulletin of the Kostroma State University named after N.A. Nekrasov. Series: Pedagogy. Psychology. Social work. Juvenile studies. Sociokinetics], 2016, № 4, pp. 243 – 246. (In Russ.)
Author's info: Elena Sa. Smirnova, Candidate of Pedagogical Sciences, Kostroma State University, Kostroma, Russian Federation, stakinaes@yandex.ru , 0000-0001-5834-6061.
Co-author's info: Valery S. Sekovanov, Doctor of Pedagogical Sciences, Candidate of Physical and Mathematical Sciences, Professor, Kostroma State University, Kostroma, Russian Federation, sekovanovvs@yandex.ru , 0000-0002-8604-8931.
Co-author's info: Larisa B. Rybina, PhD, Kostroma State Agricultural Academy, Kostroma, Russian Federation, larisa.rybina.2014@mail.ru , 0000-0001-7891-9373.
Co-author's info: Roman Al. Shchepin, Kostroma State University, Kostroma, Russian Federation, kurlikchelovek@gmail.com , 0009-0000-1175-7488.